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Abstract. We show that a proper degeneracy at q = 0 of the q-deformed rook monoid
of Solomon is the algebra of a monoid R0

n namely the 0-rook monoid, in the same vein
as Norton’s 0-Hecke algebra being the algebra of a monoid H0

n := H0
n(A) (in Cartan

type A). As expected, R0
n is closely related to the latter: it contains the H0

n(A) monoid
and is a quotient of H0

n(B). It shares many properties with H0
n, in particular it is J -

trivial. It allows us to describe its representation theory including the description of
the simple and projective modules. We further show that R0

n is projective on H0
n and

make explicit the restriction and induction along the inclusion map. A more surprising
fact is that there are several non classical tower structures on the family of (R0

n)n∈N and
we discuss some work in progress on their representation theory.
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Introduction

The Iwahori-Hecke algebra were defined by Iwahori in [7] in the following way: let q be
a prime power and let M = Mn(Fq) be the monoid of all n× n matrices over Fq. Let
G = GLn(Fq) ⊂ M be the general linear group, and let B ⊂ G be the Borel subgroup
of upper triangular matrices. The Bruhat decomposition can be written G = äσ∈Sn BσB
where Sn is the symmetric group. For σ ∈ Sn let Tσ = 1

|B| ∑x∈BσB x ∈ CG. The Hecke
ring is the Z-ring spanned by the Tσ and denoted byHC(G, B). Iwahori then proved that
this definition can be extended for q outside of prime powers and this Hecke algebra,
denoted by Hn(q), has a presentation given by generators T1, . . . , Tn−1 (where Ti := Tsi)
and relations

(1) T2
i = q · 1 + (q− 1)Ti, 1 ≤ i ≤ n− 1,

(2) TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n− 2,
(3) TiTj = TjTi if |i− j| ≥ 2.

L. Solomon [12] studied the Iwahori algebra HC(M, B). The Bruhat decomposition is
now M = är∈Rn BrB where Rn is the set of rook matrices consisting of n× n matrices with
entries {0, 1} and at most one nonzero entry in each row and column; see [11]. Those
matrices form a monoid (a generalization of groups in which the elements do not have to
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be invertible), called the rook monoid. In [13], Solomon described a generalization In(q)
outside of prime powers and a first presentation, which Halverson reformulated in [5]
into the following one, with generators T1, . . . , Tn−1, P1, . . . , Pn together with Relations (1)
(2) and (3) above and extra relations:

(4) P2
i = Pi, 1 ≤ i ≤ n,

(5) PiPj = PjPi, 1 ≤ i, j ≤ n,
(6) PiTj = TjPi, 1 ≤ i < j ≤ n,
(7) PiTj = TjPi = qPi 1 ≤ j < i ≤ n,
(8) Pi+1 = qPiT−1

i Pi 1 ≤ i < n.

The 0-Hecke algebra is the degeneracy at q = 0 of the Hecke algebra Hn(q) of the
symmetric group (or more generally a Coxeter group [4]). Its importance comes, among
other things, from its action by divided difference operators on polynomials leading to
the Demazure character formula. Starting from the work of Norton and Carter [9, 2], it
has received attention from community ranging from combinatorics, algebraic geometry,
representation theory and semi-group theory [8]. The goal of this abstract is to define
and study the q = 0 degeneracy of In(q).

This abstract is structured as follows: after some background (Section 1), we first de-
fine the 0-rook monoid R0

n by a presentation (Section 2.1) and describe some left and right
faithful actions on so-called rook vectors and polynomials (Section 2.2 and Theorem 3).
Using these presentations, we prove that R0

n is J -trivial (Theorem 4). In Section 3, we
investigate the representation theory of R0

n including simple and projective modules. We
show (Theorem 7) that R0

n is projective over H0
n and give an explicit rule for the decom-

position numbers (Theorem 8). In Section 4, we discuss some work in progress about
the branching graphs and tower of monoids.

1 Background

1.1 Rook Matrices and rook vectors

Definition 1. A rook matrix is a n× n matrix with entries {0, 1} and at most one nonzero entry
in each row and column.

We encode it by its rook vector of size n whose i-th coordinate is 0 if there is no 1 in
the i-th column of r, and the index of the row with the 1 in the i-th column otherwise.

Example 1. The rook matrices

( 0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 0

)
and

( 0 0 0 0 1
0 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 0

)
will be denoted by 04231 and 03041.

Any permutation matrix is a rook matrix, as any permutation is a rook vector. The
product of two rook matrices is again a rook matrix, so that they form a finite submonoid
of the monoid of matrices. We denote by In the identity rook matrix (or its rook vector).
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1.2 Representation theory of J -trivial monoid

In 1951, Green introduced several preorders on monoids (see for example: [10, Chapter
V]) related to inclusion of ideals. In the following, we write R for right ideal, L for left
and J for bi-sided. Let K ∈ {R,L,J } and M be a monoid. For x, y ∈ M, we write
x ≤K y when the K-ideal generated by x is contained in the K-ideal generated by y. For
example, if K = L, this means that x ≤L y if Mx ⊂ My or equivalently if x = uy for
some u ∈ M. These relations are clearly preorders and naturally give rise to equivalence
relations. For example xL y if and only if Mx = My. A monoid M is called K-trivial if
all K-classes are of cardinality one, that is if the preorders are actual orders. For finite
monoid, R,L and J are related as follows:

Lemma 1 ([10] V. Theorem 1.9). A finite monoid is J -trivial when it is both R and L-trivial.

The representation theory of J -trivial monoids has been well studied by Denton,
Hivert, Schilling and Thiéry [3]. It turns out that it is combinatorial: more precisely,
one can compute the simple, projective modules, the Cartan matrix and even the quiver
by computing only in the monoid, without requiring linear combinations. We only
summarize very shortly the result here. We denote by E(M) the set of idempotents
(elements such that e2 = e) of M.

Theorem 1 ([3]). Let M be a J -trivial monoid. There are as many as simple modules Se as
idempotents e ∈ E(M), all of dimension 1. Their structure is as follows: Se is spanned by some
εe with the action of any m ∈ M given by m · εe = εe if me = e, and 0 otherwise.

To describe the projective module, define

rfix(x) := min{e ∈ E(M) | ex = x}, (1.1)

the min being taken for the J -order.

Theorem 2 ([3]). For any idempotent e denote by L(e) := Me, and we set

L=(e) := {x ∈ Me | rfix(x) = e} and L<(e) := {x ∈ Me | rfix(x) <L e} . (1.2)

Then, the projective module Pe associated to Se is isomorphic to KL(e)/KL<(e). In particular,
taking as basis the image of L=(e) in the quotient, the action of m ∈ M on x ∈ L=(e) is given
by: m · x = mx if rfix(mx) = e and 0 otherwise.

1.3 The 0-Hecke algebra as the algebra of a J -trivial monoid

By putting q = 0 in Relation (1) defining the Hecke algebra, one gets the quadratic
equation T2

i = −Ti, the braid relations being unchanged. Further putting πi := Ti + 1,
the algebra Hn(0) becomes the algebra of a monoid H0

n generated by the (πi)i<n with
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the relation π2
i = πi and the braid relations. It turns out that H0

n is J -trivial and that the
representation theory of Hn(0) worked out by Norton and Carter [9, 2] can be obtained
from the general representation theory of J -trivial monoids [3]. Note that, to get a
monoid for Hn(0), a common choice is to put πi := −Ti. However, this choice does not
extend to the rook case.

The key to the representation theory of H0
n is the following:

Lemma 2. Let x ∈ H0
n. Then, the idempotent rfix(x) is the maximal element of the parabolic

subgroup generated by the πi’s where i is a right descent of x, that is xπi = x.

We therefore recover the fact that the projective modules of H0
n have their bases in-

dexed by permutations with a given descent set.

Note 1. The reader has to be careful that we are working with the πi basis whereas in the literature
it is customary to work with the Ti basis. As a consequence the eigenvalues 0 and −1 with Ti
becomes respectively 1 and 0. The usual simple and projective modules for Hn(0) associated with
the set I ⊂ J1, n− 1K are associated with J1, n− 1K \ I in our conventions.

2 Definitions and elementary properties

We now define the 0-rook monoid Rn
0 by extending the definition of Hn

0 .

2.1 Relations

In the relations defining In(q) let q = 0 and let πi = Ti + 1. We get the quadratic
equations π2

i = πi, the braid relations for πi where 1 ≤ i ≤ n− 1 together with

(4) P2
i = Pi, 1 ≤ i ≤ n,

(5) PiPj = PjPi, 1 ≤ i, j ≤ n,
(6) Piπj = πjPi, 1 ≤ i < j ≤ n,
(7) Piπj = πjPi = Pi, 1 ≤ j < i ≤ n,
(8) Pi+1 = PiπiPi, 1 ≤ i < n.

Let R0
n be the monoid generated by the generators π1, . . . πn−1, P1, . . . Pn and these rela-

tions. The latter clearly show that it is generated only by P1, π1, . . . πn−1, and that the
Relation (8) is rather a definition. Furthermore, Pn is the zero of R0

n, that is for any
x ∈ R0

n, one has xPn = Pnx = Pn.
By induction one can show that putting π0 = P1, the following is an alternative

presentation of R0
n:

(1) π2
i = πi, 0 ≤ i ≤ n− 1,

(2) πiπi+1πi = πi+1πiπi+1 1 ≤ i ≤ n− 2,
(3) π1π0π1π0 = π0π1π0 = π0π1π0π1
(4) πiπj = πjπi if |i− j| ≥ 2.
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This shows that R0
n is a quotient of the Hecke-monoid at q = 0 of type B, and that the

Hecke-monoid Hn(q) at q = 0 of type A is a submonoid of it.

2.2 Acting on vectors and polynomials

Let r = r1 . . . rn ∈ Rn. The classical right action of H0
n on vectors can be extended to R0

n
on rook vectors as follows:

(r1 . . . rn) · πi =

{
r1 . . . ri−1ri+1riri+2 . . . rn if ri < ri+1,
r1 . . . rn otherwise,

for 1 ≤ i ≤ n− 1.

(r1 . . . rn) · π0 = 0r2 . . . rn.

Lemma 3. The previous definition is a right monoid action of R0
n on Rn called the right natural

action. Under this action, Pj acts by killing the first j entries: (r1 . . . rn) · Pj = 0 . . . 0rj+1 . . . rn .

Similarly, we now describe a left action on rook vectors: let r = r1 . . . rn ∈ Rn. For
0 ≤ j ≤ n, we write j ∈ r if j ∈ {r1, . . . , rn}. The left action of πi ∈ R0

n on r can be
described the following way:

• π0 replaces 1 by 0 in r if 1 ∈ r, and fixes r otherwise.

• For i > 0, the action of πi on r is

– if i, i + 1 ∈ r, call k and l their respective positions. Then πi fixes r if l < k,
otherwise it exchanges i and i + 1.

– if i 6∈ r and i + 1 ∈ r, then πi replaces i + 1 by i.
– if i + 1 6∈ r then πi fixes r.

Lemma 4. The previous definition is a left monoid action of R0
n on Rn called the left natural

action. Under this action, Pj acts by replacing the entries smaller than j by 0.

Example 2. π0 · 0342 = 0342, π1 · 0342 = 0341, π2 · 0342 = 0342, π3 · 0342 = 0432,
π0 · 132 = 032.

This sheds some light on the link with the type B: it is well known that type B can
be realized using signed permutations. The quotient giving the 0-rook monoid can be
realized by replacing the negative numbers by zeros.

One can also extend the action of H0
n by isobaric divided differences on polynomi-

als: the monoid R0
n acts also on the polynomials in n indeterminates over any ring k,

k[X1, . . . , Xn] in the following way. Let f ∈ k[X1, . . . , Xn]. Define

f · π0 := f|X1=0 = f (0, X2, . . . Xn), and f · πi :=
Xi f − (Xi f ) · si

Xi − Xi+1
. (2.1)

Again, f · Pj = f (0, . . . 0, Xj, . . . Xn). It is actually possible to get an action of the full
generic q-rook algebra by letting f · Ti := q( f · si) + (1− q)( f · (πi− 1)) . Since this action
is faithful, this leads to very natural definitions of the rook-monoids and algebras.
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2.3 Properties of the monoid

In this subsection, we show that the previous actions are faithful, that is the given pre-
sentation is equivalent to the definition by operators. We work with the right action
proceeding by induction on n, using the chain of inclusions R0

1 ⊂ R0
2 ⊂ · · · ⊂ R0

n. We
start by defining a rook analog of the (inverse) Lehmer code of a permutation.

Definition 2. Let m be the map from the words on Z to N defined recursively as follows:
m(ε) = 0 where ε denotes the empty word. For any word w and any letter d,

m(wd) :=


−d if d ≤ 0 ;
m(w) + 1 if 0 < d ≤ m(w) + 1 ;
m(w) if d > m(w) + 1 .

(2.2)

A code of size n is a word on Z defined recursively by: the empty word ε is a code, and wd is a
code if w is a code and −m(w) ≤ d ≤ n. We denote by Cn the set of codes of size n.

Example 3. The codes of size 1, 2 and 3 are the following: {0, 1}, {00, 01, 02, 11, 10, 11, 12} and

{000, 001, 002, 003, 011, 010, 011, 012, 013, 020, 021, 022, 023, 111, 110, 111, 112,

113, 100, 101, 102, 103, 112, 111, 110, 111, 112, 113, 122, 121, 120, 121, 122, 123} .

m(2836427) = 7, m(3644294352538) = 6, m(02111254) = 4 where i stands for −i.
The words of C9 with prefix 02111254 are 021112544 , 021112543 , . . . , 021112549.

Notation 1. For i, n ∈N we put:
n
...
i

:=


1 if i > n,
πn . . . πi if 0 ≤ i ≤ n,
πn . . . π1π0π1 . . . πi if i < 0.

Definition 3. If c = c1 . . . cn ∈ Cn, let πc :=
0
...
c1

·
1
...
c2

· · · · ·
n− 1

...
cn

∈ R0
n.

Example 4. Let c = 11120. Then

πc =
0
...
1
·

1
...
1
·

2
...
−1
·

3
...
2
·

4
...
0
= 1 · π1 · π2π1π0π1 · π3π2 · π4π3π2π1π0

The key fact is that an element of R0
n is uniquely determined by its (left or right)

action on the rook identity matrix:

Theorem 3. For all n ∈ N, the maps c ∈ Cn 7→ πc ∈ R0
n and r ∈ R0

n 7→ In ·r ∈ Rn and
r ∈ R0

n 7→ r · In ∈ Rn are bijections so that, |Cn| = |R0
n| = |Rn|. In particular any element of

R0
n can be expressed in a unique way as πc. Moreover these canonical expressions are reduced.

The map r 7→ r · In, when extended by linearity, is an isomorphism of R0
n-modules between

the left regular module and natural module.
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For instance the expression Pn = π0π1π0π2π1π0π3π2π1π0 . . . πn−1πn−2 . . . π1π0 is
the reduced canonical expression of Pn.

Note that, under the compose bijection c 7→ r := In ·πc, the integer m(c) + 1 is the
position of the first zero in r. And that the conditions of Definition 2 amount to saying
that if a word is reduced, it never exchanges two zeros when applied to (123 . . . n).

2.4 Green relations for the rook monoid

In this subsection, we show that R0
n is J -trivial. We generalize the notion of inversions

of permutations to rooks r = r1 . . . rn ∈ Rn as Inv(r) = {(i, j) | i < j and ri > rj > 0}. We
also define its support as Supp(r) := {i | ri 6= 0} and its content as Cont(r) := {ri 6= 0}.
We order inversions and supports by inclusion, and contents of the same length by
product order that is if Cont(r) = {c1 < · · · < cl} and Cont(r′) = {d1 < · · · < dl} we
write Cont(r) ≤ Cont(r′) if for all i ≤ l one has ci ≤ di. We then define a relation 4 over
Rn. If r, r′ ∈ Rn then

r 4 r′ ⇐⇒
{

Supp(r) ( Supp(r′), or
Supp(r) = Supp(r′) and Cont(r) ≤ Cont(r′) and Inv(r) ⊇ Inv(r′).

It is easy to see that this is an order on Rn, with In as maximal element and 0n = 00...0
as minimal one.

Proposition 1. The left action is regressive: for f ∈ R0
n and r ∈ Rn, one has f · r 4 r. As a

consequence, R0
n is L-trivial.

It is well known (see eg: [3]) that any monoid that has a faithful regressive left action
is L-trivial. This shows that the L-preorder on R0

n is actually an order. It is a rook analog
of the weak order for permutations (also called permutohedron order). It is also a lattice.
However, it is not a lattice quotient of the type B weak order.

Furthermore, the presentation of R0
n is symmetric: thus this monoid is isomorphic to

its opposite and is thus also R-trivial. Finally we have proved the following:

Theorem 4. The monoid R0
n is J -trivial.

3 Representation theory

3.1 Simple modules

As explained in Section 1.2 the representation theory of R0
n is governed by its idempo-

tents, as any J -trivial monoid. The following theorem, obtained by writing explicitly
the canonical expression of the elements πJ , describes them:
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Theorem 5. The monoid R0
n has 2n idempotents: the zero (maximal element) of every parabolic

submonoid. Let J ⊂ {π0, . . . , πn−1}, and πJ the zero of the submonoid generated by J. It is an
idempotent, and furthermore πJ · πi = πi · πJ = πJ if and only if πi ∈ J.

The monoid R0
n has 2n simple modules, all one-dimensional, labeled by the parabolic sub-

monoids. More precisely, (SπJ )J⊂{π0,...,πn−1} is a complete set of pairwise non-isomorphic repre-
sentatives of isomorphism classes of simple R0

n-modules, where SπJ is defined in Theorem 1.

3.2 Projective modules

Definition 4. For π ∈ R0
n, we define its left R-descent set (respectively its right R-descent set)

by DL(π) = {0 ≤ i ≤ n− 1 |πiπ = π} (respectively DR(π) = {0 ≤ i ≤ n− 1 |ππi = π}).
A set of all elements of R0

n having the same descent sets is called a R-descent class.

Unless explicitly stated, all R-descents are on the right. There is only a finite number
of different R-descent sets possible for π ∈ R0

n : we call them R-descent type. We say that
a R-descent type is of type 0 if it has 0 in it, 1 otherwise. Similarly to H0

n, we represent
the R-descent type by ribbons with either the first column filled with 0 if it is a 0-type,
or empty otherwise. We say that a descent class D is finer than D′ if D ⊃ D′.

Example 5. Here is the list of the R-descent types for R0
4.

{}
0

{0} {1} {2} {3}

0

0

{0, 1}

0

{0, 2}

0

{0, 3}

{1, 2} {1, 3} {2, 3}

0

0

0

{0, 1, 2}

0

0

{0, 1, 3}

0

{0, 2, 3} {1, 2, 3}

0

0

0

0

{0, 1, 2, 3}

As an application of Theorem 2 we get :

Theorem 6. The projective indecomposable R0
n-modules are indexed by the R-descent type D,

and PD is spanned by the rooks belonging to the descent class D and is isomorphic to the quotient
of the associated R-descent class by the finer R-descent classes.

See the picture at the left of Figure 1 for an example of a projective indecomposable
R0

n-module.

3.3 Restriction to H0
n

We now investigate the relation between H0
n and R0

n. The restriction of simple modules
from R0

n to H0
n and the induction of simple and projective modules from H0

n to R0
n are

described by simple natural rules, which we don’t describe here for space. More inter-
esting are the restriction of projective modules from R0

n to H0
n. Indeed, we show that

they are projective on H0
n and give a precise combinatorial rule.
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Definition 5. Let I ⊂ {1, . . . , n} of cardinality i. Let σ = i1 . . . in ∈ Sn. We define ϕI(σ) to
be the rook obtained by removing the first i entries of σ and inserting zeros in positions indexed
by the elements of I. We call ψ : Rn → Sn which takes a rook, put all zeros at the beginning of
the word and replace them by the missing letters in decreasing order. Then ψ ◦ ϕI = idSn .

Example 6. For instance ϕ{1,3}(14235) = 02035 and ψ(02410) = 53241.

H0
n is a submonoid of R0

n, thus it acts by left multiplication on R0
n. It therefore makes

sense to consider R0
n as a H0

n-module:

Theorem 7. R0
n is projective on H0

n. As a consequence, any R0
n-projective module remains

projective when restricted to H0
n.

Proof. The proof widely uses the isomorphism between the regular R0
n-module and the

natural one (Theorem 3). Since applying H0
n does not create any zeros, there is a filtration

of R0
n in H0

n-modules depending on the number of zeros of the elements. By projectivity,
it is enough to prove that each layer of this filtration is projective. Each layer of this
filtration is a direct sum of modules depending on the position of these zeros since the
zeros are not moved by the action of H0

n.
For such a summand where zeros are in positions i ∈ I, the map ψ of Definition 5 is

an injective H0
n-module morphism. Its image is the set of permutations which start with

|I| descents which is a well known projective H0
n-module.

We now describe the restriction functor. We will use the product rule of ribbons
(the multiplication rule of ribbon Schur functions in noncommutative symmetric func-
tions [8]). The product of the two ribbons R and S is the sum of the two ribbons obtained
by gluing the topmost leftmost box of S either on the right or below the bottommost
rightmost box of R.

Definition 6. Let D be a type of R-descent. Thus D is a set of boxes. A zero-filling of D is a
ribbon of shape D with boxes either empty, either with 0 inside according to the following rules:

• In the first column, either every box contains 0 if D is of type 0, or none otherwise.

• Outside of the first column, if a box contains 0 then there is no box on its left, and all the
boxes below also contain zeros.

To each of these fillings we associate the product of a column of size the total number of zeros,
times the ribbons obtained from D in which each box with a zero on the filling has been removed,
in the same order of appearance.

Example 7. The following picture shows a R-descent type, and two examples of a zero-filling
with the associate respective product (the colors are just to show what happens of each box):

0
0

 0
0

0
0
0

,


 0

0

0

0

,


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Theorem 8. The indecomposable projective R0
n-module of type D splits as a H0

n-module as the
direct sum of all the indecomposable projective H0

n-module whose descent class are obtained in a
product coming from a zero-filling of D, with multiplicity.

Example 8. This is an example of decomposition of a indecomposable projective R0
n-module into

indecomposable projective H0
n-modules. The colors indicate the different products of zero-filling.

See Figure 1.

0 = + = + + + + + = + + + 2 + .

0324

0104

0401

0301

0423

0302

04130214

0403

04020203

0201

0314

0103

0304

0412

0312

0213

0102

0204

1324

3214

3241

4231

1423

4132

24133214

2143

31424123

4321

2314

4213

2134

3412

4312

4213

4312

3124

Figure 1: The decomposition of the R0
4 projective module of type {0, 2} into H0

4 projec-
tive modules.

We have shown a way to decompose a projective R0
n-module to projective H0

n-modules.
The following results tells us that we more precisely have a decomposition functor.

Theorem 9. Let PR be an indecomposable projective module of R0
n. Write PR =

⊕
PH its

decomposition into indecomposable projective H0
n-modules. Then the isomorphism of H0

n-module
ϕ̃ :

⊕
PH → PR is triangular: ϕ̃(e) = ϕI(e) + ∑e′<e e′, with ϕI defined in Definition 5 and I

the zero-set linked to PH.

Example 9. We know from the Example 8 that there is a module inside the Figure 1,

coming from the zero-filling
0

0 . This H0
n-module is well-known to have the elements 3214,

4213 and 4312. So ours must contains π{0,2}(3214) = 0104, π{0,2}(4213) = 0103 and
π{0,2}(4312) = 0102. See Figure 1.
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4 Perspectives and towers of monoids

We have the following chain of submonoids: R0
1 ⊂ R0

2 ⊂ R0
3 ⊂ · · · ⊂ R0

n ⊂ . . . We can
try to analyse the properties of this chain in term of tower of monoids [1].

The first thing we need to do so is a way to embed R0
n × R0

m into R0
n+m. We looked at

the following embedding which seems more natural regarding the action on rook vectors
and polynomials:

R0
n × R0

m −→ R0
n+m

Pi, πj 7−→ Pi, πj
Pi, πj 7−→ Pn+i, πn+j .

These embeddings are compatible with the usual ones used for H0
n. Note that they are

not injective. Nevertheless they seem to have some nice properties. For example we give
here the rule for restriction of simple modules:

Theorem 10. Let J be a subset of 0, . . . , n + m and SJ the simple R0
n+m-module associated to

this parabolic subgroup. Then there are two possibilities for the restriction:

ResR0
n+m

R0
n×R0

m
SJ =

{
SJ∩[0,...,n−1] ⊗ S{0}∪(J∩[n+1,...n−1])−n if [0, . . . , n] ⊂ J,
SJ∩[0,...,n−1] ⊗ S(J∩[n+1,...n−1])−n otherwise.

It is also possible to compute the induction using Virmaux result [14].
For projective modules, the situation is not so nice: In general, R0

n is not projective
over R0

n−1 and R0
n+m is not projective over R0

n ⊗ R0
m. However, R0

n+mis projective over
R0

n ⊗ H0
m. This gives us a structure of noncommutative symmetric function module and

co-module on the sum of the Grothendieck group of the category of projective modules⊕
n K0(Rn), similar to the case of H0

n(B). [6]

It is worth noticing that the embedding we choose is not the only one. There are
other choices of what happens to π0 of the right-side. We choose to send it to Pn+1, but
sending it to 1, π0 or to 0 = Pn+m also gives other embeddings. All of these embeddings
are non-injective, but it seems that we could also use some combinations of these choices.
We are currently searching for an embedding for which the projectivity property holds.
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